最新版 http://www.kojima-core.co.jp/report.html http://www.kojima-core.co.jp/backnumber.html e-mail kojima@kojima-core.co.jp

現場実験レポート

荷階高さと排

都市基盤整備公団・総合研究所技術センターに高さ108mの超高層住宅実験タワーが建設されて以来、排水 システムに関する多くの実験が行われ、新しい知見が学術講演会やシンポジウムなどで発表されています。なか でも負荷階高さが高くなるにつれて、排水能力が低減するとの実験結果は、超高層住宅の設計に際しては配慮 しなければならない重要項目です。当社では31階建ての超高層集合住宅において、排水負荷階を変えた現場 実験を行い、コア排水システムの排水能力低減率を確認いたしましたので、その一部を報告します。

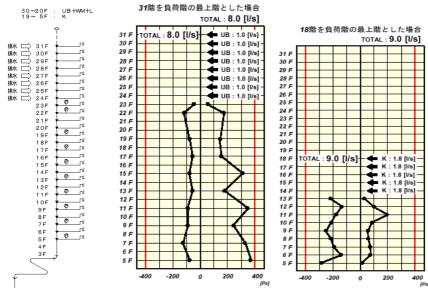
実験条件と実験結果(管内圧力分布)

実験は雑排水系統(立て管径 100mm)を用い、排水負荷階の最上階を 31F → 25F → 18F と変えて、± 400 [Pa]を判定条件としてそれぞれの場合の排水能力を検証した。なお、接続される器具が階によって異なるため、 あらかじめ器具平均排水流量(qd[l/s])を調査し、判定条件を満足して流すことができる最大合計負荷流量をも って排水能力とした。それぞれの qd[l/s]は次のとおり、

ユニットバス浴槽排水 UB: qd=1.0[l/s]

台所流しため洗い

K: qd=1.8[Us](シンクに、ためて排水)


なお、圧力センサーは洗濯機防水パンまたは台所流し横枝管に設置したが、数やケーブルの長さに限りがあ るため、一部の実験においては2層おきに設置して計測した。

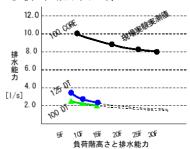
31階を負荷階の最上階とした場合および18階を負荷階の最上階とした場合の管内圧力分布は以下のとおり。

● 31 階を負荷階の

●管内圧力分布

最上階とした系統図

洗濯機防水パン 台所流し横枝管


●圧力センサーの取り付け

●排水能力曲線

図中の 100DT および 125DT については、平成 9年 3月 (社)空気調和・衛 生工学会シンポジウムテキスト「単管式排水システムのあり方を考える」を参照

コア排水システムの設計用許容流量値

本レポートを始めとする現場実験等をもとに、当社では継手別・管径別に 「高さごとの設計用許容流量値」を以下のとおり定めています。なお、横主管 の配管形態によっても排水能力の低下が生じますので、設計・施工に際して は併せてご注意いただきますようお願いします。

高さ相当[m]		18		30		45		75		105		135		165	
適応階数[階]		6	7	10	11	15	20	25	30	35	40	45	50	55	60
CPシリーズ	100A	6.8	6.8	6.8	6.8	6.5	6.2	6	5.8	5.7	5.6	5.5	5.4		
	80A	3.5	3	2.5	2.5										
KSTシリーズ	100A	3.5	3.5	3.5	3.5	3.5									
	80A	2.5	2.5	2.5	2.5										
HPシリーズ	100A			10.3	10.3	9.7	9.3	9	8.7	8.5	8.4	8.2	8.1	8	7.9
	125A			16	16	15	14.4	13.9	13.5	13.2	12.9	12.7	12.5	12.3	12.1